q^2=166

Simple and best practice solution for q^2=166 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q^2=166 equation:



q^2=166
We move all terms to the left:
q^2-(166)=0
a = 1; b = 0; c = -166;
Δ = b2-4ac
Δ = 02-4·1·(-166)
Δ = 664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{664}=\sqrt{4*166}=\sqrt{4}*\sqrt{166}=2\sqrt{166}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{166}}{2*1}=\frac{0-2\sqrt{166}}{2} =-\frac{2\sqrt{166}}{2} =-\sqrt{166} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{166}}{2*1}=\frac{0+2\sqrt{166}}{2} =\frac{2\sqrt{166}}{2} =\sqrt{166} $

See similar equations:

| -13+3h=17-7h | | 2(3x-4)-2=x-10+3x | | 0.7(10x+14)=3.1(0.2x+5) | | 3x-13+x=180 | | 1/2x+14=50 | | 81+32+x=180 | | 67+91+x=180 | | 51+39+x=180 | | 22+41+x=180 | | (2-x)(x+6)=180 | | 6.32t-14.00=45.60 | | 60x=40x+200 | | 4(2x-11)=60 | | 12=-(-3(4x-2(x-2) | | 40x+200=60x | | 4.2x-2.3=3.9x+3.1 | | (48-2x)=(54-8x) | | -3x+2=-3x+4 | | 4(7x-9)-7(4x+3)=6(9x-1) | | (12x)=(7x-10) | | -30=-6x-15 | | 76-14r=36 | | 6(y=3)=18 | | 3x+32=110 | | 2x(5x+2)=26 | | 5y-91=74 | | (3x+23)=(5x-1) | | (81)^-4/((729)^(2-x))=9^(4-x) | | 6y-49=77 | | (1x+120)=(9x) | | 2/3x-7=-1/2x-+12 | | x+9+42+104=180 |

Equations solver categories